What is the general solution of the differential equation? # cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy #
1 Answer
# sec^2y = sec^2x + C #
Explanation:
We have:
# cosy(ln(secx+tanx))dx=cosx(ln(secy+tany))dy # ..... [A]
If we rearrange this ODE from differential form into standard form we have:
# (ln(secy+tany))/Cosydy/dx = (ln(secx+tanx))/ cosx #
This is now a separable ODE, do we can "separate the variables" to give:
# int \ (ln(secy+tany))/Cosy \ dy = int \ (ln(secx+tanx))/ cosx \ dx # ..... [B}
Consider the RHS integral:
# I = int \ (ln(secx+tanx))/ cosx \ dx #
# \ \ = int \ secx \ (ln(secx+tanx)) \ dx #
We can perform a substitution:
# u = sec x => (du)/dx = ln|secx+tanx|#
if we substitute this into the integral we get:
# I = int \ u \ du = 1/2u^2+A #
# \ \ = 1/2sec^2x + A #
Using this result we can now integrate both sides of [B] to get:
# 1/2sec^2y = 1/2sec^2x + A #
# :. sec^2y = sec^2x + C #
Which is the General Solution of [A]