How to evaluete: #int_0^(pi/2) e^(sinx)*cosxdx# ?

2 Answers
Oct 6, 2017

Use substitution to get the answer #e-1 approx 1.718#.

Explanation:

One way to do this is to first find the indefinite integral before applying the Fundamental Theorem of Calculus. The indefinite integral can be found by substituting #u=sin(x), du=cos(x)dx# to get

#int\ e^{sin(x)}*cos(x)\ dx=int\ e^u\ du=e^u+C=e^{sin(x)}+C#

Therefore, #int_{0}^{pi/2}e^{sin(x)}*cos(x)\ dx=e^{sin(pi/2)}-e^{sin(0)}=e^{1}-1=e-1 approx 1.718#.

Alternatively, you could keep it as a definite integral and change the limits of integration after using the same substitution #u=sin(x), du=cos(x)dx# as follows:

#int_{0}^{pi/2}e^{sin(x)}*cos(x)\ dx=int_{0}^{1}e^{u}\ du=e^{1}-e^{0}=e-1 approx 1.718#.

Oct 6, 2017

# e-1.#

Explanation:

Let, #I=int_0^(pi/2)e^(sinx)*cosxdx.#

Subst., #sinx=t rArr cosxdx=dt.#

Also, #x=0 rArr t=sin0=0, and, x=pi/2 rArr t=sin(pi/2)=1.#

#:. I=int_0^1e^tdt,#

#=[e^t]_0^1,#

#=e^1-e^0.#

# rArr I=e-1.#