A triangle has corners A, B, and C located at #(4 ,7 )#, #(3 ,2 )#, and #(2 ,4 )#, respectively. What are the endpoints and length of the altitude going through corner C?

1 Answer
Oct 7, 2017

End points of altitude CD #(2,4) & (-7,97/26)#
Length of altitude CD =13.39#

Explanation:

Equation of AB is obtained using coordinates of A & B
#(y-7)/(2-7)=(x-4)/(3-4)#
#(y-7)/(-5)=(x-4)/(-1)#
#y-7=5(x-4)#
#y=5x-13#

Slope of AB #m1=5#
Slope of Altitude to line AB and passing through point C be m2.
#m2=-(1/m1)=-(1/5)#

Equal of Altitude passing through point C is
#(y-4)=-(1/5)*(x-2)#
#(-5y)+20=x-2#
#x+5y=22#

Solving equations of AB & Altitude through C gives base of altitude point D.
#y=5x-13#
#-5x+y=-13# Eqn (1)
#x+5y=22#
#5x+25y=110# Eqn (2)
Adding (1) & (2),
#26y=97#
#y=97/26#
#-5x+(97/26)=-13#
#-5x=-(97+338)/13=-(435/13)=-35#
#x=-7#
Coordinates of point D(-7,97/26)

Length of altitude CD is
#=sqrt((2-(-7))^2+(4-(97/26))^2)#
#sqrt(81+98.38)=13.39#