How do you divide and simplify #\frac { x + 1} { 4x + y } \div \frac { 3x ^ { 2} - x - 4} { 16x ^ { 2} - y ^ { 2} }#?

1 Answer
Oct 7, 2017

(4x+y)/(3x-4)

Explanation:

When dividing by a factor #a/b#, it is the same as multiplying by #b/a#. That in mind...

#(x+1)/(4x+y)div(3x^2-x-4)/(16x^2-y^2)= (x+1)/(4x+y)*(16x^2-y^2)/(3x^2-x-4)#.

Factoring the right hand term gives us:

#(x+1)/(4x+y)times(16x^2-y^2)/(3x^2-x-4)# #= (x+1)/(4x+y)times((4x+y)(4x-y))/((3x-4)(x+1) #.

The #x+1# and #4x+y# terms cancel out, leaving...

#(x+1)/(4x+y)times((4x+y)(4x-y))/((3x-4)(x+1)) = (4x-y)/(3x-4)#