How do you divide #\frac { x - 2} { x ^ { 2} - 10x + 25} \div \frac { x ^ { 3} - 2x ^ { 2} } { x ^ { 3} - 25x }#?

1 Answer
Oct 9, 2017

# (x+5)/(x(x-5))#

Explanation:

# (x-2)/(x^2-10x+25) -: (x^3-2x^2)/(x^3-25x) #

#= (x-2)/(x-5)^2 -: (x^2(x-2))/(x(x^2-25) #

#= (x-2)/(x-5)^2 * (x(x^2-25))/(x^2(x-2)) #

#= cancel((x-2))/(x-5)^cancel2 * (cancelxcancel((x-5))(x+5))/(x^cancel2cancel((x-2))) #

# (x+5)/(x(x-5))# [Ans]