If #{(n-1)!+n!}/((n+1)!) =1/6#, find #n#?

1 Answer
Oct 10, 2017

#n=6#

Explanation:

#{(n-1)!+n!}/((n+1)!) =1/6#

#hArr{(n-1)!+n(n-1)!}/(n(n+1)xx(n-1)!) =1/6#

or #((n-1)!(1+n))/((n-1)!(n^2+n)) =1/6#

or #(1+n)/(n^2+n)=1/6#

or #n^2+n=6+6n#

or #n^2-5n-6=0#

i.e. #(n-6)(n+1)=0#

i.e. #n=6# or #-1#

But as #(-1)!# is not defined #n=6#