How do you find the derivative of #y = arcsin(1 - 2sin^2x)#?

2 Answers
Oct 10, 2017

We can rewrite as

#siny = 1 - 2sin^2x#

Which in turn can be rewritten as

#siny = cos(2x)#

We now differentiate implicitly on the left side and using the chain rule on the right.

#cosy(dy/dx) = -2sin(2x)#

#dy/dx = (-2sin(2x))/cosy#

We know that #sin^2y + cos^2y = 1# and so #cosy = sqrt(1 -sin^2y#. From the original function, we know that #cosy = sqrt(1 - (1 - 2sin^2x)^2) = sqrt(1 - (1 - 4sin^2x + 4sin^4x)) = sqrt(4sin^2x - 4sin^4x)#. Accordingly,

#dy/dx = (-2sin(2x))/sqrt(4sin^2x - 4sin^4x)#

We can simplify as follows:

#dy/dx = (-2(2sinxcosx))/sqrt(4sin^2x(1 - sin^2x))#

#dy/dx= (-2(2sinxcosx))/(2sinxsqrt(1 - sin^2x))#

#dy/dx = (-2cosx)/sqrt(cos^2x)#

#dy/dx = (-2cosx)/|cosx|#

Depending upon the value of #x#, #dy/dx# will either be positive or negative.

#cosx# will negative whenever #pi/2 ≤ x ≤ (3pi)/2#.

Since the periodicity of #cosx# is #2pi#.

We can therefore define the derivative by the piecewise function

#dy/dx = {(2, "when " pi/2 + npi ≤ x ≤ pi +npi, x in RR, n in ZZ), (-2, "when " npi ≤ x ≤ pi/2 +npi, x in RR, n in ZZ):}#

Thanks to Douglas K for his guidance here!

Hopefully this helps!

Oct 10, 2017

#y’=(-2cosx)/sqrt(1+cos^2x)#

Explanation:

#y=sin^-1(1-2sin^2x)=sin^-1(cos^2x)#
Put #u=cos^2x#
#(du)/(dx)=-2cos x*sin x=-sin 2x#
#(dy)/(dx)=(d/dx)sin^-1u=(1/sqrt(1-u^2))(du)/(dx)#
#y’=(1/sqrt(1-cos^4x))*(-sin 2x)#
#y’=(-sin 2x)/(sqrt((1+cos^2x)(1-cos^2x)))#
#=(-2*cancel(sinx)*cosx)/(cancel(sinx)*sqrt(1+cos^2x))#
#y’=(-2cos x)/sqrt(1+cos^2x)#