How do you simplify #\frac { - 49x ^ { 8} + 14x ^ { 6} - 14x ^ { 4} } { - 7x ^ { 6} }#?

2 Answers
Oct 12, 2017

#=> 7x ^2 - 2 x^-2+ 2#

OR

#=> 7x ^2 - 2/ x^2+ 2#

Explanation:

#\frac { - 49x ^ { 8} + 14x ^ { 6} - 14x ^ { 4} } { - 7x ^ { 6} }#

Take #7x^4# common from both numerator and denominator:

Using Rule of indices :
#a^m a^n = a^(m+n)#

=#\frac {7x^4 (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - 7x ^ { 4} (x^2) }#

=#\frac {cancel(7x^4) (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - cancel(7x ^ { 4}) (x^2) }#

=#\frac { (- 7x ^ { 4} + 2x ^ { 2} - 2)} { - (x^2) }#

=#\frac {cancel- (7x ^ { 4} - 2x ^ { 2} + 2)} {cancel- (x^2) }#

=#\frac { (7x ^ { 4}- 2x ^ { 2} + 2)} { (x^2) }#

Using rule of indices: #a^m /a^n = a^(m-n)# and/or #1/a^m = a^-m#

=# (7x ^ { 4} + 2x ^ { 2} - 2)\times (x^-2) #

=# 7x ^ { 4-2} + 2x ^ { 2-2} - 2 x^-2#

=# 7x ^ { 2} + 2x ^ { 0} - 2 x^-2#

#x^0 = 1#

=# 7x ^2 + 2\times 1 - 2 x^-2#

=# 7x ^2 + 2 - 2 x^-2#

=# 7x ^2 - 2 x^-2+ 2#

OR

=# 7x ^2 - 2/ x^2+ 2#

Oct 12, 2017

#color(magenta)(7x^2-2+2x^-2#

Explanation:

#(-49x^8+14x^6-14x^4)/(-7x^6)#

#color(white)(..........)ulcolor(white)(......)ul(7x^2-2+2x^-2)#
#-7x^6|-49x^8+14x^6-14x^4#
#color(white)(.............)ul(-49x^8)#
#color(white)(............................)14x^6#
#color(white)(............................)ul(14x^6)#
#color(white)(...................................)-14x^4#
#color(white)(.....................................)ul(-14x^4)#

#color(magenta)((-49x^8+14x^6-14x^4)/(-7x^6) = 7x^2-2+2x^-2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Check:-

#color(white)(.............)7x^2-2+2x^-2#
#xxcolor(white)(....)-7x^6#
#color(white)(.........)overline(-49x^8+14x^6-14x^4)#