Given #f(x) = x/(6+x) and g(x) = (6x)/(1-x)#, how do find #f(g(x)) and g(f(x))#?

1 Answer
Oct 13, 2017

#f(g(x))=(6x)/(1-7x)# and #g(f(x))=x#

Explanation:

For #f(g(x))#, we just substitute #x# with #g(x)# in #f(x)# and similarly for #g(f(x))#, we just substitute #x# with #f(x)# in #g(x)#.

As #f(x)=x/(6+x)# and #g(x)=(6x)/(1-x)#

#f(g(x))=((6x)/(1-x))/(1-(6x)/(1-x))#

= #((6x)/(1-x))/((1-x-6x)/(1-x))#

= #(6x)/(1-x)xx(1-x)/(1-x-6x)#

= #(6x)/(1-7x)#

and #g(f(x))=(6xx(x)/(6+x))/(1-x/(6+x))#

= #((6x)/(6+x))/((6+x-x)/(6+x))#

= #((6x)/(6+x))/(6/(6+x))#

= #(6x)/(6+x)xx(6+x)/6#

= #x#