Find the differential of #f(x)=x^20# using first principal?

2 Answers
Oct 16, 2017

#(df)/(dx)=20x^19#

Explanation:

Let #f(x)=x^20#

then using bimonial expansion #f(x+h)=(x+h)^20=x^20+20x^19h+(20*19)/(1*2)x^18h^2+(20*19*18)/(1*2*3)x^17h^3+...#

= #x^20+20x^19h+190x^18h^2+1140x^17h^3+...#

Hence, #(df)/(dx)=Lim_(h->0)(f(x+h)-f(x))/h#

= #Lim_(h->0)(x^20+20x^19h+190x^18h^2+1140x^17h^3+...-x^20)/h#

= #Lim_(h->0)(20x^19+190x^18h+1140x^17h^2+...)#

= #20x^19#

Oct 16, 2017

See below.

Explanation:

#f'(x) = lim_(trarrx)(t^20-x^20)/(t-x)#

# = lim_(trarrx)(t^19+t^18x+t^17x^2+ * * * + t^2x^17+tx^18+t^19)#

# = underbrace(x^19+x^18x+x^17x^2+ * * * x^2x^17+x x^18+x^19)_(20 " terms, each is "x^19)#

# = 20x^19#