The coordinates of A are #(-7,4)# and the coordinates of G are #(3,-10)#. How do you determine and state the coordinates of M if AG is partitioned into a ratio of 1:3?

1 Answer
Oct 18, 2017

Coordinates of G are #(-4(1/2), -6(1/2))#

A (-7, 4)
G (3, -10)
B midpoint of AG (-2, -3)
M midpoint of AB (-4(1/2), -6(1/2)
Now AM : MG is 1 : 3

Explanation:

A (-7, 4)
G (3, -10)
B midpoint of AG (-2, -3)
M midpoint of AB (-4(1/2), -6(1/2)
Now AM : MG is 1 : 3

Let Mid point of AG be B.
Coordinates of B are then given by
#x=(3+(-7))/2=-2, y =((-10)+4)/2=-3#
#B(-2, -3)#

G is now the midpoint of AB.
Coordinates of G are
#x=((-2)+(-7))/2=-4(1/2)#
#y=((-10)+(-3))/2=-6(1/2)#
Coordinates of G are #(-4(1/2), -6(1/2))#