Question #ca463

3 Answers
Oct 20, 2017

#1/cosx-cosx=(1-cos^2x)/cosx=sin^2x/cosx=sinx*sinx/cosx=(sinx)(tanx).#

Oct 20, 2017

RTP: #1/cos(x)-cos(x)=sin(x)tan(x)#

Since #tan(x)=sin(x)/cos(x)#

#1/cos(x)-cos(x)=sin^2(x)/cos(x)#

Multiplying through by #cos(x)#

#1-cos^2(x)=sin^2(x)#
#1=sin^2(x)+cos^2(x)#

Using trigonometric identity: #sin^2(x)+cos^2(x)=1#

#1=1#

#therefore 1/cos(x)-cos(x)=sin(x)tan(x) square#

Oct 20, 2017

See the answer below...

Explanation:

#1/cosx-cosx#
#=(1-cos^2x)/cosx#
#=sin^2x/cosx# #[sin^2x+cos^2x=1]#
#=(sinx xxsinx)/cosx#
#=sinxtanx# #[sinx/cosx=tanx]#

Hope it helps...
Thank you...