How do you multiply #(x-2)(x-6)=-4#?

1 Answer
Oct 21, 2017

#x=4#

Explanation:

#(x-2)(x-6)=-4#
Use the distributive property
#(x)(x)+(x)(-6)+(-2)(x)+(-2)(-6)=4#
#x^2 - 6x - 2x + 12=4#
#x^2 -8x + 12=4#
Subtract #color(red)(-4)# to both sides
#x^2 - 8x + 12 - color(red)((-4)=cancel(-4) cancelcolor(red)(-4)#
#x^2 - 8x + 16 = 0#
Now, we need to factorize the left side
#(x - 4)(x-4)=0#
Set factors equal to #0#
#x-4=0 or x-4=0#
#x = 0 + 4#
#x=4#