From #0<|x_n - x|<|x|/2# we have equivalently
#epsilon_1^2=sqrt((x_n-x)^2)#
#sqrt((x_n-x)^2)+epsilon_2^2 = sqrt(((x)/2)^2)#
with #{epsilon_1,epsilon_2} ne 0#
then
#(sqrt((x_n-x)^2)+epsilon_2^2)^2 = ((x)/2)^2# or
#(x_n-x)^2+2epsilon_2^2 sqrt((x_n-x)^2)+epsilon_2^4=x^2/4#
and again
#(2epsilon_2^2 sqrt((x_n-x)^2))^2=(x^2/4-(x_n-x)^2-epsilon_2^4)^2#
or factoring
#-1/16 (2 epsilon_2^2 + x - 2 x_n) (2 epsilon_2^2 + 3 x - 2 x_n) (2 epsilon_2^2 - 3 x +
2 x_n) (2 epsilon_2^2 - x + 2 x_n)=0#
or
#{(2 epsilon_2^2 + x - 2 x_n=0), (2 epsilon_2^2 + 3 x - 2 x_n=0), (2 epsilon_2^2 - 3 x + 2 x_n=0), (2 epsilon_2^2 -
x + 2 x_n=0):}#
or equivalently
#{(x/2 - x_n < 0), (3/2 x - x_n < 0), ( - 3/2 x + x_n < 0), (-
x/2 + x_n < 0):}#
or equivalently
#x/2< x_n# and #x_n < x/2#
#3/2x < x_n# and #x_n < 3/2 x#
Those results are contradictory.