How do you solve #5b ^ { 3} + 15b ^ { 2} + 12b= - 36#?
1 Answer
Oct 25, 2017
Explanation:
#"rearrange equating to zero"#
#rArr5b^3+15b^2+12b+36=0#
#"factorise by 'grouping'"#
#=color(red)(5b^2)(b+3)color(red)(+12)(b+3)=0#
#"factor out "(b+3)#
#rArr(b+3)(color(red)(5b^2+12))=0#
#"equate each factor to zero and solve for b"#
#b+3=0rArrb=-3larrcolor(blue)"real root"#
#5b^2+12=0rArrb^2=-12/5#
#rArrb=+-sqrt(-12/5)#
#color(white)(rArrb)=+-(2sqrt3)/(sqrt5)i#
#color(white)(rArrb)=+-(2sqrt15)/(5)ilarrcolor(blue)" complex roots"#