What is the equation of the line that passes through (-8, -3) and (10, -6)?

1 Answer
Oct 26, 2017

#y=((-1)/6)(x+8)-3#

Explanation:

The points are #(-8,-3)# and #(10,-6)#

Let #y_1=-3# , #y_2=-6# , #x_1=-8# , #x_2=10#

The slope of the line (#m#) #=# #(y_2-y_1)/(x_2-x_1)#

And the equation of the line passing through those points is

#(y-y_1)=m(x-x_1)# #-># #color(red)1#

Now we calculate the slope.

#m# #=# #(y_2-y_1)/(x_2-x_1)#

#m=(-6-(-3))/(10-(-8))#

#m=(-1)/6#

Put the value of #m# , #x_1# , #y_1# in #color(red)1#

Therefore the equation of the line is

#(y-(-3))=((-1)/6)(x-(-8))#

#y+3=((-1)/6)(x+8)#

#y=((-1)/6)(x+8)-3#

This is the equation of the line.