What is the Cartesian form of #( -2 , ( - 9pi)/2 ) #?

2 Answers
Oct 26, 2017

The Cartesian point is #(0,2)#

Explanation:

Given: #r = -2 and theta = (-9pi)/2#

For the x coordinate, use the equation:

#x = rcos(theta)#

#x = -2cos((-9pi)/2)#

#x = 0#

For the y coordinate, use the equation:

#y = rsin(theta)#

#y = -2sin((-9pi)/2)#

#y = 2#

The Cartesian point is #(0,2)#

Nov 3, 2017

#( 0 , 2 )#

Explanation:

enter image source here

It can be seen from the diagram that the x coordinate of P is #rcos(theta)# and the y coordinate of P is #rsin(theta)#

So:

#x=rcos(theta)#

#y=rsin(theta)#

From example:

#x=-2cos((-9pi)/2)= 0#

#y=-2sin((-9pi)/2)=2#

Cartesian coordinate:

#( 0 , 2 )#