How do you evaluate #\int \frac { \cos \theta } { \sin ^ { 4} \theta } d \theta#?

2 Answers
Oct 29, 2017

#-1/(3sin^3x) + c #

Explanation:

This intergal can be computed using an appropriate u substitution

Letting #u# = #sintheta#
then #du = costheta d theta#

Hence # int costheta / (sin^4theta) d theta# becomes #int (du)/u^4 # = # int u^-4 du #

# therefore -1/3 u^-3 + c #

Hence via considering #u = sintheta#

The antiderivative is #-1/(3sin^3theta) + c #

Oct 29, 2017

#=(-sin^(-3) theta)/3 +C#

Explanation:

Let #" "color (brown)(u= sin theta " "#then#" "du=cos theta d theta#
#" "#
Let us substitute the above equation in the given integral
#" "#
#int(cos theta)/(sin^4 theta) d theta#
#" "#
#=int (du)/u^4#
#" "#
#=intu^(-4) du#
#" "#
#=u^(-4+1)/(-4+1) +C" "# where #" "C in RR#
#" "#
#=u^(-3)/-3 +C#
#" "#
#=(color(brown)(-sin^(-3) theta))/3 +C#