If #a+b+c=0#, #ab+bc+ca=2# and #abc=-1# then what is the value of #a^2/(b+c) + b^2/(c+a) + c^2/(a+b)# ?

1 Answer
Oct 31, 2017

#a^2/(b+c)+b^2/(c+a)+c^2/(a+b)=0#

Explanation:

As #a+b+c=0#, we have #a+b=-c#, #b+c=-a# and #c+a=-b#.

Hence #a^2/(b+c)+b^2/(c+a)+c^2/(a+b)#

= #(a^2(c+a)(a+b)+b^2(b+c)(a+b)+c^2(b+c)(c+a))/((a+b)(b+c)(c+a))#

= #(a^2bc+b^2ac+c^2ab)/(-abc)#

= #-(a+b+c)#

= #0#