Question #7e566

1 Answer
Nov 1, 2017

#tan^3x/3+tanx+C#

Explanation:

When integrating powers of tanx and secx it makes it easier to use suitable substitutions.

  • Firstly note that:
    #tan^2x+1=sec^2x#

#int(tan^2x+1)^2dx=int(sec^2x)^2dx#

#=intsec^4x dx=intsec^2x(tan^2x+1)dx#

  • Now we can use a substitution to solve further

Let #u=tan(x)#

#du=sec^2xdx#

#intsec^2x(tan^2x+1)dx=int(u^2+1)du#

#=u^3/3+u+C#

sub u back in which gives us our answer

#tan^3x/3+tanx+C#

Hope this helped, good luck :)