If #2(a^2-b^2) = 44# and #a-b=2#, what is the value of #a+b#?

2 Answers
Nov 1, 2017

#11#

Explanation:

#2(a^2-b^2)=44--(1)#

and

#a-b=2---(2)#

from

#(1)rarr(a^2-b^2)=44/2=22#

using difference of squares

#(a-b)(a+b)=22#

from

#(2)rarr2(a+b)=22#

#=>a+b=11#

Nov 1, 2017

11

Explanation:

#a-b=2#
#a=2+b#

#2(a^2-b^2)=44#
#2((2+b)^2-b^2)=44#
#(2+b)^2-b^2=22#
#b^2+4b+4-b^2=22#
#4b+4=22#
#4b=18#
#b=9/2#

#a-b=a-9/2=2#
#a=13/2#

#a=13/2#, #b=9/2#

#a+b=13/2+9/2=11#