How do you solve this system of equations: #x- 3y = - 19 and 3x - 4y = - 27#?

1 Answer
Nov 1, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#x - 3y = -19#

#x - 3y + color(red)(3y) = -19 + color(red)(3y)#

#x - 0 = -19 + 3y#

#x = -19 + 3y#

Step 2) Substitute #(-19 + 3y)# for #x# in the second equation and solve for #y#:

#3x - 4y = -27# becomes:

#3(-19 + 3y) - 4y = -27#

#(3 xx -19) + (3 xx 3y) - 4y = -27#

#-57 + 9y - 4y = -27#

#-57 + (9 - 4)y = -27#

#-57 + 5y = -27#

#color(red)(57) - 57 + 5y = color(red)(57) - 27#

#0 + 5y = 30#

#5y = 30#

#(5y)/color(red)(5) = 30/color(red)(5)#

#(color(red)(cancel(color(black)(5)))y)/cancel(color(red)(5)) = 6#

#y = 6#

Step 3) Substitute #6# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = -19 + 3y# becomes:

#x = -19 + (3 xx 6)#

#x = -19 + 18#

#x = -1#

The Solution Is: #x = -1# and #y = 6# or #(-1, 6)#