How do you solve #X= \frac { e ^ { 1} } { x + 1}#?

1 Answer
Nov 2, 2017

#x=1/2(-1+-sqrt(1+4e))#
[Assuming #X# and #x# represent the same variable]

Explanation:

N.B. To "solve" this equation it is necessary to assume that #X# and #x# represent the same variable.

With that assumption:

#x=e^1/(x+1)#

Any value to the power of 1 is that value.

#:. x=e/(x+1)#

#x(x+1) =e#

#x^2+x-e=0#

Apply quadratic formula.

#x= (-1+-sqrt(1^2-4xx1xx(-e)))/2#

#= (-1+-sqrt(1+4e))/2#

#= 1/2(-1+-sqrt(1+4e))#