If #3^(x+2) = 2^(2x-1)# and #x = log A / log B#, what is the product #AB#?

1 Answer
Nov 4, 2017

#AB=1/24#

Explanation:

As #3^(x+2)=2^(2x-1)#, we have

#(x+2)log3=(2x-1)log2#

or #xlog3+2log3=2xlog2-log2#

or #x(log3-2log2)=-2log3-log2#

or #x(log(3/2^2))=log(3^(-2)xx2^(-1))#

or #xlog(3/4)=log(1/(3^2xx2))#

or #x=log(1/18)/log(3/4)#

Hence #A=1/18# and #B=3/4#

and #AB=1/18xx3/4=1/24#