How do you multiply #(5y - 3) ( 5y - 8)#?

4 Answers
Nov 4, 2017

See explanation.

Explanation:

To multiply 2 polynomials you have to multiply each term in one of the polynomials by each term of the other and then reduce the like terms:

#(5y-3)(5y-8)=#

#(5y)(5y)+(5y)(-8)+(-3)(5y)+(-3)(-8)=#

#=25y^2-40y-15y+24=25y^2-55y+24#

Nov 4, 2017

#25y^2-55y+24#

Explanation:

#color(blue)((5y-3)(5y-8)#

We can use the FOIL method to solve this

Paint

Now multiply the firsts

#rarr5yxx5y=25y^2#

Now multiply the outers

#rarr5yxx-8=-40y#

Now multiply the inners

#rarr-3xx5y=-15y#

Now multiply the lasts

#rarr-3xx-8=24#

Now put them all together

#rarr25y^2-40y-15y+24#

#color(green)(rArr25y^2-55y+24#

Hope that helps!!! ☺•☻

Nov 4, 2017

Given: #color(blue)((5y-3)) color(green)( (5y-8) ) #

Multiply everything in the right brackets by everything in the left.
Note that the minus in #color(blue)(-3)# follows the three.

#color(green)(color(blue)(5y)(5y-8) color(blue)(color(white)("ddd")-color(white)("ddd")3)(5y-8)) #

#25y^2-40ycolor(white)("ddddd") - 15y+24#

#25y^2-55y+24#

Nov 4, 2017

#color(magenta)(25y^2-55y+24#

Explanation:

#(5y-3)(5y-8)#

#color(white)(aaaaaaaaaaaaaa)##5y-3#
#color(white)(aaaaaaaaaaa)## xx underline(5y-8)#
#color(white)(aaaaaaaaaaaaa)##25y^2-15y#
#color(white)(aaaaaaaaaaaaaaaaa)##-40y+24#
#color(white)(aaaaaaaaaaaaa)##overline(25y^2-55y+24)#

#color(white)(aaaaaaaaaaaaa)##color(magenta)(25y^2-55y+24#