How do you evaluate #(- \frac { 7} { 5} ) ^ { 2} - 2( \frac { 1} { 20} - \frac { 1} { 4} )#?

2 Answers
Nov 4, 2017

#59/25#

Explanation:

First, you need to square #-7/5#:

#(-7/5)^2 = (-7/5)(-7/5)=49/25#

Now, you need to combine the fractions on the far right side:

#−2(1/20−1/4)=(-1/10+1/2)#

Find common denominators (#10#):

#(-1/10+1/2)=(-1/10+(1(5))/(2(5)))=(-1/10+5/10)#

Simplify:

#(-1/10+5/10)=(4/10)#

Combine #49/25# and #4/10# to get the simplified version:

#(49(2))/(25(2))+(4(5))/(10(5))=118/50=59/25#

Nov 4, 2017

#2 9/25 color(white)("dd") ->color(white)("dd") 59/25 #

Explanation:

#color(magenta)("There is a trap about signs in this - easy to forget about something")#

#color(blue)("Consider "(-7/5)^2#

First step:

When multiplying or dividing like signs give positive and unlick signs give negative.

We have a negative multiplied by a negative. So the answer to this part is positive #(-7/2)^2->+" sum number"#

Second step:

Dealing with just the numbers: #7^2/5^2=49/25#

Looking ahead it would work better if the denominator is 100.

Multiply by 1 and you do not change the value. However 1 comes in many forms.

#color(purple)(+49/25color(red)(xx1)color(white)("dd") ->color(white)("dd")+49/25color(red)(xx4/4)color(white)("dd") =color(white)("dd") +196/100)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Consider "-2(1/20-1/4)#

Multiply everything inside the bracket by #-2# giving

#-2/20+2/4 color(white)("d")->color(white)("d")2/4-2/20#

Because of what we had for the first part I am choosing to make the denominators 100

#color(green)(color(white)("ddddddddd")->color(white)("d") [2/4color(red)(xx1)]-[2/20color(red)(xx1)]#

#color(green)(color(white)("ddddddddd")-> [2/4color(red)(xx25/25)]-[2/20color(red)(xx5/5)]#

#color(purple)(color(white)("ddddddddd")->color(white)("ddd")50/100color(white)("dd")-color(white)("dd")10/100color(white)("ddd") = +40/100) #
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Putting "ul("everything")" back together")#

#color(magenta)("Avoiding the trap - note that 'put with' is the same as +")#

#(-7/5)^2 color(white)("d")"put with"color(white)("d")[-2(1/20-1/4)]#

#color(white)("dd")196/100 color(white)("d")" put with"color(white)("ddd")[+40/100]#

#color(purple)(color(white)("dddddd")196/100+40/100color(white)("ddddd") = color(white)("ddd")236/100color(white)("ddd")=color(white)("d")2 9/25color(white)("ddd") -> 59/25)#