How do you divide #(3x ^ { 3} - 6x ^ { 2} - 8x - 50) \div ( x - 4)#?

2 Answers
Nov 5, 2017

Integer Quotient #= (3*x^2 + 6*x + 16) #

Remainder # = 14#

Dividend = (Integer Quotient) x (Divisor) + (Remainder)

#(3*x^3 - 6*x^2 - 8*x - 50) = (3*x^2 + 6*x + 16) * (x - 4 ) + 14#

Explanation:

We have

#(3*x^3 - 6*x^2 - 8*x - 50)/(x - 4)#

#= 3*x^2 + (6*x^2-8*x-50)/(x-4)#

#= 3*x^2 + 6*x+(16*x-50)/(x-4)#

#= 3*x^2 + 6*x+16 + 14/(x-4)#

We can represent the answer as follows:

Dividend = (Integer Quotient) x (Divisor) + (Remainder)

#(3*x^3 - 6*x^2 - 8*x - 50) = (3*x^2 + 6*x + 16) * (x - 4 ) + 14#

Nov 6, 2017

#3x^2+6x+16+14/(x-4)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(3x^2)(x-4)color(magenta)(+12x^2)-6x^2-8x-50#

#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(magenta)(+24x)-8x-50#

#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(red)(+16)(x-4)color(magenta)(+64)-50#

#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(red)(+16)(x-4)+14#

#"quotient "=color(red)(3x^2+6x+16)," remainder "=14#

#rArr(3x^3-6x^2-8x-50)/(x-4)=3x^2+6x+16+14/(x-4)#