How do you divide #(3x ^ { 3} - 6x ^ { 2} - 8x - 50) \div ( x - 4)#?
2 Answers
Integer Quotient
Remainder
Dividend = (Integer Quotient) x (Divisor) + (Remainder)
Explanation:
We have
We can represent the answer as follows:
Dividend = (Integer Quotient) x (Divisor) + (Remainder)
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x-4)color(magenta)(+12x^2)-6x^2-8x-50#
#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(magenta)(+24x)-8x-50#
#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(red)(+16)(x-4)color(magenta)(+64)-50#
#=color(red)(3x^2)(x-4)color(red)(+6x)(x-4)color(red)(+16)(x-4)+14#
#"quotient "=color(red)(3x^2+6x+16)," remainder "=14#
#rArr(3x^3-6x^2-8x-50)/(x-4)=3x^2+6x+16+14/(x-4)#