How do you solve #25x ^ { 2} + 50x = 24#?

2 Answers
Nov 5, 2017

#x=2/5, -12/5#

Explanation:

You can either use the quadratic formula or simply factor

Using factoring,
#25x^2 + 50x - 24=0#
#(5x-2)(5x+12)=0#

Therefore,
#5x-2=0#
#x=2/5#

#5x+12=0#
#x=-12/5#

Using quadratic formula,
#x= (-b +- sqrt(b^2-4ac) )/ (2a)#

#a=25 , b=50 , c=-24#

#x= (-50 +- sqrt(50^2-(4*25*-24)) )/ (2*25)#

#x= (-50 +- 70) / (50)#

#x= (-50 + 70) / (50)#
#x=2/5#

#x= (-50 - 70) / (50)#
#x=-12/5#

Nov 5, 2017

#x=2/5color(white)("xxx")"or"color(white)("xxx")x=-2 2/5#

Explanation:

Given
#color(white)("XXX")25x^2+50x=24#

#25(x^2+2x)=24#

#color(green)(25)(x^2+2xcolor(magenta)(+1))=24color(magenta)(+1)xxcolor(green)(25)#

#25(x+1)^2=49#

#(x+1)^2=49/25#

#(x+1)=+-7/5#

#x=+7/5-1=2/5color(white)("xxx")"or"color(white)("xxx")x=-7/5-1=-12/5=-2 2/5#