How do you solve #\frac { 3x - 6} { 2} + \frac { 2x + 4} { 3} = 7#?

2 Answers
Nov 7, 2017

#x=4#

Explanation:

Solve:

#(3x-6)/2+(2x+4)/3=7#

In order to add fractions, the denominators must be the same. BothThe least common denominator (LCD) for this equation is #6#.

Multiply each term by #6#.

#(6(3x-6))/2+(6(2x+4))/3=6xx7#

Simplify.

#(color(red)cancel(color(black)(6))^3(3x-6))/color(red)cancel(color(black)(2))^1+(color(red)cancel(color(black)(6))^2(2x+4))/color(red)cancel(color(black)(3))^1=6xx7#

#3(3x-6)+2(2x+4)=42#

Expand.

#9x-18+4x+8=42#

Simplify.

#9x+4x-18+8=42#

#13x-10=42#

Add #10# to both sides.

#13x=42+10#

#13x=52#

Divide both sides by #13#.

#x=52/13#

Reduce the fraction by dividing the numerator and denominator by #13#.

#x=(52-:13)/(13-:13)#

#x=4#

Nov 7, 2017

X=4

Explanation:

#(3x-6)/2 + (2x+4)/3 = 7#

#->(3/3) *(3x-6)/2 + (2/2)(2x+4)/3 = 7#

#->(9x-18)/6 + (4x+8)/6 = 7#

#->(9x+4x-10)/6 = 7#

#->(13x-10)/6 = 7#

#->(13x-10) = 42#
#->13x = 52#
#->x = 4#