Question #f75bd

2 Answers
Nov 8, 2017

Let's rewrite this to make our life easier:

#y= 2^(1/2) - 3x^2#

Now take the first derivative:

#2^(1/2)# disappears from the equation.

#x^2 = 2x#. Then multiply by #-3# to give you #-6x#

#dy/dx = -6x#

For the second derivative, derive the first derivative.

#(d^2y)/dx^2 = -6#

The second derivative is negative, meaning that the graph is a maximum.

Nov 8, 2017

#-6/sqrt((2-3x^2)^3#

Explanation:

#"assuming "y=sqrt(2-3x^2)#

#"to obtain the first derivative use the "color(blue)"chain rule"#

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larr"chain rule"#

#y=sqrt(2-3x^2)=(2-3x^2)^(1/2)#

#rArrdy/dx=1/2(2-3x^2)^(-1/2)xxd/dx(2-3x^2)#

#color(white)(rArrdy/dx)=-3x(2-3x^2)^(-1/2)#

#"to obtain the second derivative use the "color(blue)"product rule"#

#"given "f(x)=g(x)h(x)" then"#

#f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"#

#g(x)=-3xrArrg'(x)=-3#

#h(x)=(2-3x^2)^(-1/2)rArrh'(x)=3x(2-3x^2)^(-3/2)#

#rArr(d^2y)/(dx^2)=-3x(3x(2-3x^2)^(-3/2))+(2-3x^2)^(-1/2)(-3)#

#color(white)(rArrd^2y/dx^2)=-3(2-3x^2)^(-3/2)[3x^2+2-3x^2]#

#color(white)(rArrd^2y/dx^2)=-6/(sqrt((2-3x^2)^3)#