Question #f75bd
2 Answers
Let's rewrite this to make our life easier:
Now take the first derivative:
For the second derivative, derive the first derivative.
The second derivative is negative, meaning that the graph is a maximum.
Explanation:
#"assuming "y=sqrt(2-3x^2)#
#"to obtain the first derivative use the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larr"chain rule"#
#y=sqrt(2-3x^2)=(2-3x^2)^(1/2)#
#rArrdy/dx=1/2(2-3x^2)^(-1/2)xxd/dx(2-3x^2)#
#color(white)(rArrdy/dx)=-3x(2-3x^2)^(-1/2)#
#"to obtain the second derivative use the "color(blue)"product rule"#
#"given "f(x)=g(x)h(x)" then"#
#f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#g(x)=-3xrArrg'(x)=-3#
#h(x)=(2-3x^2)^(-1/2)rArrh'(x)=3x(2-3x^2)^(-3/2)#
#rArr(d^2y)/(dx^2)=-3x(3x(2-3x^2)^(-3/2))+(2-3x^2)^(-1/2)(-3)#
#color(white)(rArrd^2y/dx^2)=-3(2-3x^2)^(-3/2)[3x^2+2-3x^2]#
#color(white)(rArrd^2y/dx^2)=-6/(sqrt((2-3x^2)^3)#