How do you find the derivative of #y= sin{cos^2(tanx)}#? Calculus Basic Differentiation Rules Chain Rule 1 Answer 1s2s2p Nov 8, 2017 #(dy)/(dx)=-2sec^2(x)sin(tanx)cos(tanx)cos(cos^2(tan(x)))# Explanation: #y= sin(cos^2(tanx))=sin(f(x))# #y=sin(f(x))=>(dy)/(dx)=f'(x)cos(f(x))# #f(x)=cos^2(g(x))=(cos(g(x)))^2# #f'(x)=2*d/(dx)[cos(g(x))] * cos(g(x))# #f'(x)=2*-g'(x)sin(g(x))*cos(g(x))# #f'(x)=-2g'(x)sin(g(x))cos(g(x))# #g(x)=tanx# #g'(x)=sec^2x# Therefore, #f'(x)=-2sec^2(x)sin(tanx)cos(tanx)# #(dy)/(dx)=-2sec^2(x)sin(tanx)cos(tanx)cos(cos^2(tan(x)))# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1247 views around the world You can reuse this answer Creative Commons License