How do you find the antiderivative of # cos pi x#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Monzur R. Nov 9, 2017 #intcospixdx=(sinpix)/pi+"c"# Explanation: For the integrand #cospix#, let #u=pix# and #du=pidx#. Then #intcospixdx=1/piintcosudu=sinu/pi+"c"=(sinpix)/pi+"c"# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 25607 views around the world You can reuse this answer Creative Commons License