How do you simplify # (1+tan(x)) / (1+cot(x))#?

2 Answers

The answer is : # tan x#

Explanation:

#(1 + tan x)/(1 + cot x)#
# = (1 + tan x)/(1 + 1/(tan x) #
#= (1 + tan x)/(tan x + 1)cdottan x #
#=cancelcolor(red)(1 + tan x)/cancelcolor(red)(tan x + 1)cdottan x#
#=tanx#

Nov 10, 2017

#tanx#

Explanation:

if you're not sure how to start then change everything to sine and cosines

#(1+tanx)/(1+cotx)=(1+(sinx/cosx))/(1+(cosx/sinx))#

#=((cosx+sinx)/cosx)/((sinx+cosx)/sinx)#

#=(1/cosx)/(1/sinx)=sinx/cosx=tanx#