#I#=#int_0^oo dt/(t^4+1)#
After using #t=1/y# and #dt=-dy/y^2# transformation,
#I#=#int_oo^0 [-dy/y^2]/[(1/y)^4+1]#
=#int_oo^0 (-y^2*dy)/(y^4+1)#
=#int_0^oo (y^2*dy)/(y^4+1)#
=#int_0^oo (t^2*dt)/(t^4+1)#
After collecting 2 integrals,
#2I#=#int_0^oo [(t^2+1)*dt]/(t^4+1)#
=#int_0^oo [(t^2+1)*dt]/[(t^2+sqrt(2)*t+1)(t^2-sqrt(2)*t+1)]#
=#1/2*int_0^oo [(2t^2+2)*dt]/[(t^2+sqrt(2)*t+1)(t^2-sqrt(2)*t+1)]#
=#1/2*int_0^oo dt/(t^2+sqrt(2)*t+1)#+#1/2*int_0^oo dt/(t^2-sqrt(2)*t+1)#
=#1/2*int_0^oo (2*dt)/(2t^2+2sqrt(2)*t+2)#+#1/2*int_0^oo (2*dt)/(2t^2-2sqrt(2)*t+2)#
=#sqrt(2)/2*int_0^oo (sqrt(2)*dt)/[(sqrt(2)*t+1)^2+1]#+#sqrt(2)/2*int_0^oo (sqrt(2)*dt)/[(sqrt(2)*t-1)^2+1]#
=#sqrt(2)/2*[Arctan(sqrt(2)*t+1)]_0^oo#+#sqrt(2)/2*[Arctan(sqrt(2)*t-1)]_0^oo#
=#(pisqrt(2))/2#
Thus, #I=(pisqrt(2))/4#