How do you solve #\sqrt { 8} \cdot \sqrt { 18} + \sqrt { 50} \cdot \sqrt { 2}#?

2 Answers
Nov 13, 2017

#22#

Explanation:

begin by rewriting the square roots in theirs simplest form

#sqrt8*sqrt18+sqrt50*sqrt2#

#=sqrt(2xx4)*sqrt(9xx2)+sqrt(25xx2)*sqrt2#

#=>2sqrt2*3sqrt2+5sqrt2sqrt2#

#=6xxsqrt2xxsqrt2+5sqrt2xxsqrt2#

#=6xx2+5xx2#

#=12+10=22#

Nov 13, 2017

See explanation.

Explanation:

We can use the following rule to calculate the value of this expression:

The product of square roots of expressions is equal to square root of product of those experssions

#sqrt(a)*sqrt(b)=sqrt(a*b)#

Here we get:

#sqrt(8)*sqrt(18)+sqrt(50)*sqrt(2)=sqrt(8*18)+sqrt(50*2)=#

#=sqrt(144)+sqrt(100)=12+10=22#