Question #5abd9

2 Answers
Nov 14, 2017

The right side of the equation was missing a minus sign between the #cotx# and #tanx#.

Explanation:

#(1-2(sinx)^2)/((sinx)(cosx))#

#=1/((sinx)(cosx))-(2(sinx)^2)/((sinx)(cosx))#

#=((sinx)^2+(cosx)^2)/((sinx)(cosx))-2tanx#

#=((sinx)^2/((sinx)(cosx)))+((cosx)^2/((sinx)(cosx)))-2tanx#

#=((sinx)/(cosx))+((cosx)/(sinx))-2tanx#

#=tanx+cotx-2tanx#

#=cotx-tanx#

Nov 14, 2017

#LHS=(1-2sin^2x)/(sinxcosx)#

#=(cos^2x+sin^2x-2sin^2x)/(sinxcosx)#

#=(cos^2x-sin^2x)/(sinxcosx)#

#=cos^2x/(sinxcosx)-sin^2x/(sinxcosx)#

#=cosx/sinx-sinx/cosx#

#=cotx-tanx#