Evaluate: #int_0^(pi/4)log(1+tan(x))*dx# ?

The answer is #pi/2#, but how?

1 Answer
Nov 14, 2017

#int_0^(pi/4)log(1+tanx)dx=pi/8log2#

Explanation:

As #int_0^af(x)dx=int_0^af(a-x)dx#

Let #I=int_0^(pi/4)log(1+tanx)dx=int_0^(pi/4)log(1+tan(pi/4-x))dx#

= #int_0^(pi/4)log(1+(1-tanx)/(1+tanx))dx#

= #int_0^(pi/4)log(2/(1+tanx))dx#

= #int_0^(pi/4)log2dx-int_0^(pi/4)log(1+tanx)dx#

= #int_0^(pi/4)log2dx-I#

Hence #2I=int_0^(pi/4)log2dx#

and #I=log2xxpi/4xx1/2=pi/8log2#