How do you solve #tan x + tan 3x = 0# ?

1 Answer
Nov 14, 2017

Solutions:

#x = npi" "# or #" "x = +-pi/4+npi#

for any integer #n#

Explanation:

Formula for #tan 3 theta#

By de Moivre's formula we have:

#(cos theta + i sin theta)^n = cos n theta + i sin n theta#

In particular:

#cos 3 theta + i sin 3 theta =(cos theta + i sin theta)^3#

#color(white)(cos 3 theta + i sin 3 theta) =cos^3 theta + 3i cos^2 theta sin theta - 3 cos theta sin^2 theta - i sin^3 theta#

#color(white)(cos 3 theta + i sin 3 theta) =(cos^3 theta- 3 cos theta sin^2 theta) + i (3 cos^2 theta sin theta - sin^3 theta)#

So equating real and imaginary parts, we find:

#{ (cos 3 theta = cos^3 theta - 3 cos theta sin^2 theta), (sin 3 theta = 3 cos^2 theta sin theta - sin^3 theta) :}#

So:

#tan 3 theta = (sin 3 theta) / (cos 3 theta)#

#color(white)(tan 3 theta) = (3 cos^2 theta sin theta - sin^3 theta) / (cos^3 theta - 3 cos theta sin^2 theta)#

#color(white)(tan 3 theta) = ((3 cos^2 theta sin theta - sin^3 theta) -: cos^3 theta) / ((cos^3 theta - 3 cos theta sin^2 theta) -: cos^3 theta)#

#color(white)(tan 3 theta) = (3 tan theta - tan^3 theta) / (1 - 3 tan^2 theta)#

Example

So:

#0 = tan x + tan 3 x#

#color(white)(0) = tan x + (3 tan x - tan^3 x) / (1 - 3 tan^2 x)#

Multiplying both ends by #(1-3 tan^2 x)# this becomes:

#0 = (1 - 3 tan^2 x) tan x + (3 tan x - tan^3 x)#

#color(white)(0) = tan x - 3 tan^3 x + 3 tan x - tan^3 x#

#color(white)(0) = 4 tan x - 4 tan^3 x#

#color(white)(0) = 4 tan x(1 - tan^2 x)#

#color(white)(0) = 4 tan x(1 - tan x)(1 + tan x)#

Hence:

#tan x = 0#, #1# or #-1#

Note that #tan x# has period #pi#, so all the solutions are:

#x = tan^(-1) (0) + npi = npi#

#x = tan^(-1) (1) + npi = pi/4+npi#

#x = tan^(-1) (-1) + npi = -pi/4+npi#

for any integer #n#