How do you solve #tan x + tan 3x = 0# ?
1 Answer
Solutions:
#x = npi" "# or#" "x = +-pi/4+npi#
for any integer
Explanation:
Formula for
By de Moivre's formula we have:
#(cos theta + i sin theta)^n = cos n theta + i sin n theta#
In particular:
#cos 3 theta + i sin 3 theta =(cos theta + i sin theta)^3#
#color(white)(cos 3 theta + i sin 3 theta) =cos^3 theta + 3i cos^2 theta sin theta - 3 cos theta sin^2 theta - i sin^3 theta#
#color(white)(cos 3 theta + i sin 3 theta) =(cos^3 theta- 3 cos theta sin^2 theta) + i (3 cos^2 theta sin theta - sin^3 theta)#
So equating real and imaginary parts, we find:
#{ (cos 3 theta = cos^3 theta - 3 cos theta sin^2 theta), (sin 3 theta = 3 cos^2 theta sin theta - sin^3 theta) :}#
So:
#tan 3 theta = (sin 3 theta) / (cos 3 theta)#
#color(white)(tan 3 theta) = (3 cos^2 theta sin theta - sin^3 theta) / (cos^3 theta - 3 cos theta sin^2 theta)#
#color(white)(tan 3 theta) = ((3 cos^2 theta sin theta - sin^3 theta) -: cos^3 theta) / ((cos^3 theta - 3 cos theta sin^2 theta) -: cos^3 theta)#
#color(white)(tan 3 theta) = (3 tan theta - tan^3 theta) / (1 - 3 tan^2 theta)#
Example
So:
#0 = tan x + tan 3 x#
#color(white)(0) = tan x + (3 tan x - tan^3 x) / (1 - 3 tan^2 x)#
Multiplying both ends by
#0 = (1 - 3 tan^2 x) tan x + (3 tan x - tan^3 x)#
#color(white)(0) = tan x - 3 tan^3 x + 3 tan x - tan^3 x#
#color(white)(0) = 4 tan x - 4 tan^3 x#
#color(white)(0) = 4 tan x(1 - tan^2 x)#
#color(white)(0) = 4 tan x(1 - tan x)(1 + tan x)#
Hence:
#tan x = 0# ,#1# or#-1#
Note that
#x = tan^(-1) (0) + npi = npi#
#x = tan^(-1) (1) + npi = pi/4+npi#
#x = tan^(-1) (-1) + npi = -pi/4+npi#
for any integer