How do you simplify #\frac{((a+b)\div a)-\frac{b}{a+b}}{a+b}+\frac{\frac{b}{a}-\frac{a-b}{a+b}}{a-b}#?

1 Answer
Nov 14, 2017

#-b/(a(a-b))#

(Get ready! It's a long one.)

Explanation:

Rewrite the expression.

#(((a+b)/a)-b/(a+b))/(a+b)+(b/a-(a-b)/(a+b))/(a-b)#

Point your focus to the fractions in the numerators. Add each set of fractions by multiplying by either #a# or #a+b#.

#((a+b)^2/(a(a+b))-(b(a+b))/(a(a+b)))/(a+b)+((b(a+b))/(a(a+b))-(a(a-b))/(a(a+b)))/(a-b)#

#(((a+b)^2-b(a+b))/(a(a+b)))/(a+b)+((b(a+b)-a(a-b))/(a(a+b)))/(a-b)#

Simplify the complex fractions by multiplying by #1/(a+b)# or #1/(a-b)#.

#(1/(a+b))(((a+b)^2-b(a+b))/(a(a+b)))+(1/(a-b))((b(a+b)-a(a-b))/(a(a+b)))#

#((a+b)^2-b(a+b))/(a(a+b)^2)+(b(a+b)-a(a-b))/(a(a+b)(a-b))#

Simplify.

#(a+b-b)/(a(a+b))+(b(a+b)-a(a-b))/(a(a+b)(a-b))#

#a/(a(a+b))+(b(a+b)-a(a-b))/(a(a+b)(a-b))#

Multiply #a/(a(a+b))# by #(a-b)/(a-b)# to combine the fractions.

#(a(a-b)-b(a+b)-a(a-b))/(a(a+b)(a-b))#

Simplify.

#(-b(a+b))/(a(a+b)(a-b))#

#-b/(a(a-b))#