Rewrite the expression.
#(((a+b)/a)-b/(a+b))/(a+b)+(b/a-(a-b)/(a+b))/(a-b)#
Point your focus to the fractions in the numerators. Add each set of fractions by multiplying by either #a# or #a+b#.
#((a+b)^2/(a(a+b))-(b(a+b))/(a(a+b)))/(a+b)+((b(a+b))/(a(a+b))-(a(a-b))/(a(a+b)))/(a-b)#
#(((a+b)^2-b(a+b))/(a(a+b)))/(a+b)+((b(a+b)-a(a-b))/(a(a+b)))/(a-b)#
Simplify the complex fractions by multiplying by #1/(a+b)# or #1/(a-b)#.
#(1/(a+b))(((a+b)^2-b(a+b))/(a(a+b)))+(1/(a-b))((b(a+b)-a(a-b))/(a(a+b)))#
#((a+b)^2-b(a+b))/(a(a+b)^2)+(b(a+b)-a(a-b))/(a(a+b)(a-b))#
Simplify.
#(a+b-b)/(a(a+b))+(b(a+b)-a(a-b))/(a(a+b)(a-b))#
#a/(a(a+b))+(b(a+b)-a(a-b))/(a(a+b)(a-b))#
Multiply #a/(a(a+b))# by #(a-b)/(a-b)# to combine the fractions.
#(a(a-b)-b(a+b)-a(a-b))/(a(a+b)(a-b))#
Simplify.
#(-b(a+b))/(a(a+b)(a-b))#
#-b/(a(a-b))#