Prove? #secx/sinx-cscx/secx=tanx#

2 Answers

See below:

Explanation:

#secx/sinx-cscx/secx=tanx#

remember that #secx=1/cosx and cscx=1/sinx#

#1/(sinxcosc)-cosx/sinx=tanx#

#1/(sinxcosc)-cosx/sinx(cosx/cosx)=tanx#

#1/(sinxcosc)-cos^2x/(sinxcosx)=tanx#

#(1-cos^2)/(sinxcosc)=tanx#

remember that #sin^2x+cos^2x=1 => sin^2x=1-cos^2x#

#sin^2x/(sinxcosc)=tanx#

#sinx/cosx=tanx#

#tanx=tanx color(white)(000)color(green)root#

Nov 15, 2017

#LHS=sec(x)/sin(x) - csc(x)/sec(x)#

#=(sec(x)sec(x) - csc(x)sin(x))/(sinxsecx)#

#=(sec^2(x) - 1)/(sinx/cosx)#

#=tan^2x/tanx#

# = tan(x)=RHS#