How do you solve the system of equations #-8x + 3y = 7# and #13x - 3y = - 1#?

2 Answers
Nov 17, 2017

#y=16.6/3 or 5.533333333#

#x=1.2#

Explanation:

#:.-8x+3y=7-------(1)#

#:.13x-3y=-1------(2)#

#:.(1)+(2)#

#:.5x=6#

#x=6/5# or #1.2#

substitute #x=1.2# in (1)

#:.-8(1.2)+3y=7#

#:.-9.6+3y=7#

#:.3y=7+9.6#

#:.3y=16.6#

#:.y=16.6/3# or #5.533333333#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

check:

substitute #y=5.533333333# and #x=1.2# in (1)

#:.-8(1.2)+3(5.533333333)=7#

#:.-9.6+16.6=7#

#:.7=7#

Nov 17, 2017

#x=6/5 =1.2#

#y= 5 8/15->83/15 larr" Exact value" #

Explanation:

#-8x+3y=7" "...........................Equation(1)#
#13x-3y=-1" "........................Equation(2)#

Although one is negative and the other is positive they both have #3y#

If we were to add these two equations together the #-3y# and #+3y# would cancel each other out and we would be left with only #x# as the unknown.

#-8x+3y=+7" "...........................Equation(1)#
#ul(color(white)("d")13x-3y=-1" ")........................Equation(2) larr" Add"#
#5x+0y=+6#

#x=6/5 =12/10=1.2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substitute for #x# in #Eqn(1)# giving:

#-8(6/5)+3y=7#

#3y=7+8(6/5)#

#y=7/3+8/cancel(3)^1(cancel(6)^2/5)#

#y= 5 8/15->83/15 larr" Exact value"#

#y~~15.53bar3#
where the bar over the three means the 3 goes on for ever.