How do you find the integral of #f(x)=x^(2/3) *ln x# using integration by parts?

1 Answer
Nov 18, 2017

#(3x^(5/3))/5lnx-9/25x^(5/3)+C#

Explanation:

Integration by parts formula

#I=intcolor(red)(u)color(blue)((dv)/(dx))dx=color(blue)(u)color(red)(v)-intcolor(blue)(v)color(red)((du)/(dx))dx#

the key to success with this formula is the correct choice of #u" & " (dv)/(dx)#

we are given

#intx^(2/3)lnxdx#

#color(red)(u=lnx=>(du)/(dx)=1/x)#

#color(blue)((dv)/(dx)=x^(2/3)=>v=(3x^(5/3))/5)#

#:.I=color(blue)((3x^(5/3))/5)color(red)(lnx)-intcolor(blue)((3x^(5/3))/5)xxcolor(red)(1/x)dx#

#:.I=(3x^(5/3))/5lnx-3/5int(x^(2/3))xdx#

#:.I=(3x^(5/3))/5lnx-3/5xx3/5x^(5/3)+C#

#:.I=(3x^(5/3))/5lnx-9/25x^(5/3)+C#