How do I solve #sin x tan x - sin x = 0# for #(0,2pi)# ?
1 Answer
Nov 20, 2017
Explanation:
#"take out a "color(blue)"common factor of sinx"#
#rArrsinx(tanx-1)=0#
#rArrsinx=0tox=0" or "2pilarrcolor(blue)"outwith interval"#
#tanx-1=0rArrtanx=1#
#rArrx=pi/4" or "x=(pi+pi/4)=(5pi)/4#
#rArrx=pi/4 "or "x=(5pi)/4x in(0,2pi)#