How do you graph and label the vertex and axis of symmetry of #y=-3x(x+7)#?

1 Answer
Nov 21, 2017

Summary:

Axis of symmetry: #x=-3.5#

Vertex: #(-3.5,36.75)#

X-intercepts: #(0,0)# and #(-7,0)#

Refer to the explanation for the process.

Explanation:

#y=-3x(x+7)#

Expand.

#y=-3x^2-21x# is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where:

#a=-3#, #b=-21#, and #c=0#.

Axis of symmetry: vertical line that divides the parabola into two equal halves; #x=(-b)/(2a)#

Plug in known values.

#x=(-(-21))/(2*-3)#

#x=21/(-6)#

#x=-21/6#

Reduce by dividing the numerator and denominator by #3#.

#x=-7/2=-3.5# #larr# Axis of symmetry, also #x#-value of vertex

Vertex: maximum or minimum point #(x,y)# of the parabola. Since #a<0#, the vertex will be the maximum point and the parabola will open downward.

Substitute #-3.5# for #x# and solve for #y#.

#y=-3(-3.5)^2-21(-3.5)#

#y=-36.75+73.5=36.75#

Vertex: #(-3.5,36.75)#

X-intercepts: values of #x# when #y=0#

#0=-3x^2-21#

Factor out the common term #3x#.

#0=-3x(x+7)#

Divide both sides by #-3#.

#0=x(x+7)#

Solutions for #x#.

#x=0#

#x+7=0#

#x=-7#

x-intercepts: #(0,0)# and #(-7,0)#

Summary:

Axis of symmetry: #x=-3.5#

Vertex: #(-3.5,36.75)#

X-intercepts: #(0,0)# and #(-7,0)#

Plot the vertex and x-intercepts. Sketch a parabola through the points. Do not connect the dots.

graph{y=-3x^2-21x+0 [-19.92, 12.11, -2.67, 13.35]}