How do you evaluate 2\cdot 5^ { 3} + 0\cdot 5^ { 2} + 1\cdot 5^ { 1} + 4\cdot 5^ { 0}?

1 Answer
Nov 23, 2017

Use Order of Operations

Explanation:

Using PEMDAS (or something like BODMAS, depending on where you live), you can break this down.

Parentheses/Brackets: We don't have any of these in the expression.

Exponents/Orders: 5^3 = 125
5^2 = 25
5^1 = 5 (Any value^1 equals that value * 1)
5^0 = 1 (Any value^0 except for 0 equals 1)

2 * 125 + 0 * 25 + 1 * 5 + 4 * 1

Multiplication/Division: 2 * 125 = 250
0 * 25 = 0 (Any value * 0 equals 0)
1*5 = 5
4 * 1 = 4

250 + 0 + 5 + 4

Addition/Subtraction: 250 + 0 = 250
250 + 5 = 255
255 + 4 = 259

2\cdot 5^ { 3} + 0\cdot 5^ { 2} + 1\cdot 5^ { 1} + 4\cdot 5^ { 0} = 259