How do you factor #m^ { 2} - 4m + 4- n ^ { 2} + 8n - 16#?
1 Answer
Explanation:
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
Use this with
#m^2-4m+4-n^2+8n-16 = (m^2-4m+4)-(n^2-8n+16)#
#color(white)(m^2-4m+4-n^2+8n-16) = (m-2)^2-(n-4)^2#
#color(white)(m^2-4m+4-n^2+8n-16) = ((m-2)-(n-4))((m-2)+(n-4))#
#color(white)(m^2-4m+4-n^2+8n-16) = (m-n+2)(m+n-6)#
Alternative method
Given:
#m^2-4m+4-n^2+8n-16#
Set
#m^2-4m+4-16 = m^2-4m-12 = (m-6)(m+2)#
Set
#4-n^2+8n-16 = -n^2+8n-12#
#color(white)(4-n^2+8n-16) = -(n^2-8n+12)#
#color(white)(4-n^2+8n-16) = -(n-6)(n-2)#
#color(white)(4-n^2+8n-16) = (n-6)(-n+2)#
Then combine the factorisations we have found:
#(m-6)# and#(n-6)# combine to form#(m+n-6)#
#(m+2)# and#(-n+2)# combine to form#(m-n+2)#
So:
#m^2-4m+4-n^2+8n-16 = (m+n-6)(m-n+2)#