If the roots of the equation #a(b − c)x^2 + b(c − a)x + c(a − b) = 0# are equal, then a, b, c are in ? (A) A.P. (B).G.P. (C) H.P. (D) none of these

2 Answers
Nov 24, 2017

(C) #a,b# and #c# are in H.P.

Explanation:

As the roots of #a(b-c)x^2+b(c-a)x+c(a-b)=0# are equal,

the discriminant of the equation is #0# i.e.

#b^2(c-a)^2=4ac(b-c)(a-b)#

or #b^2(c^2-2ac+a^2)=4ac(ab-ac+bc-b^2)#

or #b^2c^2-2acb^2+a^2b^2=4a^2bc-4a^2c^2+4abc^2-4acb^2#

or #4a^2c^2+a^2b^2-4a^2bc-4abc^2+2acb^2+b^2c^2=0#

or #a^2(4c^2+b^2-4bc)-2abc(2c-b)+b^2c^2=0#

or #a^2(2c-b)^2-2abc(2c-b)+b^2c^2=0#

Let #2c-b=t# then the above becomes

#a^2t^2-2abct+b^2c^2=0#

or #(at-bc)^2=0# i.e. #at-bc=0#

or #a(2c-b)-bc=0#

i.e. #2ac-ab-bc=0#

or #bc+ab=2ac#

or #bc-ac=ac-ab# and dividing by #abc#, we get

#1/a-1/b=1/b-1/c#

Hence, #a,b# and #c# are in H.P.

Nov 24, 2017

See below.

Explanation:

Solving for #x#

#a (b - c) x^2 + b (c - a) x + c (a - b) = 0#

we have as roots

#x = {(1),(((a - b) c)/(a (b - c))):}#

or

#(a-b)c = a(b-c)# or dividing both sides by #abc#

#1/b-1/a=1/c-1/b rArr #HP