Evaluate the integral # int \ xe^(-ax^2) \ dx #?
1 Answer
Nov 25, 2017
# int \ xe^(-ax^2) \ dx = -1/(2a) \ e^(-ax^2) +C #
Explanation:
I assume we seek:
# I = int \ xe^(-ax^2) \ dx #
We can perform a substitution:
# u = -ax^2 => (du)/(dx) = -2ax #
Then we can rewrite the integral and perform a substitution
# I = -1/(2a) \ int \ (-2ax)e^(-ax^2) \ dx #
# \ \ = -1/(2a) \ int \ e^u \ du #
# \ \ = -1/(2a) \ e^u +C #
And restoring the substitution we have:
# I = -1/(2a) \ e^(-ax^2) +C #