How do you simplify #(-3sqrt(3k)+4)(sqrt(3k)-5)#?

2 Answers
Nov 26, 2017

#-9k+ 19sqrt(3k)-20 #

Explanation:

#(-3sqrt(3k) +4)(sqrt(3k)-5)# or

#-3sqrt(3k)*sqrt(3k)+3sqrt(3k)*5+4*sqrt(3k) -4*5# or

#-3*3k +15sqrt(3k)+4sqrt(3k)-20# or

#-9k+ 19sqrt(3k)-20 # [Ans]

Nov 26, 2017

#-9k+19sqrt3k-20#

Explanation:

#"multiply each term in the second factor by each term"#
#"in the first factor"#

#rArr(color(red)(-3sqrt(3k)+4))(sqrt(3k)-5)#

#=color(red)(-3sqrt(3k))(sqrt(3k)-5)color(red)(+4)(sqrt(3k)-5)#

#"distributing gives "#

#• " note that "sqrtaxxsqrta=a#

#=-9k+15sqrt(3k)+4sqrt(3k)-20#

#=-9k+19sqrt(3k)-20#