Solve #12sin^2x+7cosx-13=0# for the range #360^o<=x<=540^o#?

Not sure how to start, I'm thinking of using #sinx/cosx=tanx# maybe?

2 Answers
Nov 27, 2017

#12sin^2x+7cosx-13=0#

#=>12-12cos^2x+7cosx-13=0#

#=>12cos^2x-7cosx+1=0#

#=>12cos^2x-4cosx-3cosx+1=0#

#=>4cosx(3cosx-1)-1(3cosx-1)=0#

#=>(3cosx-1)(4cosx-1)=0#

When #cosx=1/3=cos(70.5^@)=cos(360+70.5)#

#=>x=430.5^@#

When #cosx=1/4=cos(75.5^@)=cos(360+75.5)#

#=>x=435.5^@#

Nov 27, 2017

#430^@53; 435^@52#

Explanation:

Replace #sin^2 x# by #(1 - cos^2 x)#:
#12 - 12cos^2 x + 7cos x - 13 = 0#
- 12cos^2 x + 7cos x - 1 = 0
Solve this quadratic equation for cos x.
#D = d^2 = 49 - 48 = 1# --> d = +- 1
There are 2 real roots:
#cos x = -b/(2a) +- d/(2a) = - 7/-24 +- 1/24 = (7 +- 1)/24#
#cos x = 8/24 = 1/3#
#cos x = 6/24 = 1/4#
a. #cos x = 1/3#
Calculator and unit circle give 2 solutions:
#x = +- 70^@53#
b. #cos x = 1/4# --> #x = +- 75^@52#
In the range (360, 540), there are only 2 answers:
#x = 70.53 + 360 = 430^@53#
#x = 75.52 + 360 = 435^@52#